Коагуляционный гемостаз. Роль свертывающей системы в обеспечении остановки кровотечения

Система гемостаза

Система гемостаза – биологическая система, обеспечивающая, с одной стороны, сохранение жидкого состояния циркулирующей крови, а с другой – предупреждение и купирование кровотечений.

Компоненты системы гемостаза :

сосудисто-тромбо цитарное звено

система свертывания крови (коагуляция)

фибринолитическа я система (тромболизис)

Сосудисто-тромбо цитарный гемостаз

В сосудисто-тромбо цитарном механизме свертывания крови участвуют сосуды, ткань, окружающая сосуды и форменные элементы крови (главная роль принадлежит тромбоцитам).
Тромбоциты образуются в костном мозге из мегакариоцитов. Продолжительност ь их жизни около 9 суток. При недостаточном количестве тромбоцитов или их функциональной неполноценности развивается микроциркуляторн ый тип кровоточивости. К важнейшим функциям тромбоцитов относят адгезивно-агрега ционную и ангиотрофическую .
В условиях нормы эндотелий эффективно предупреждает процессы адгезии, агрегации тромбоцитов, а также реакций коагуляции. Способность эндотелия сохранять кровь в жидком состоянии обеспечивается синтезом ингибитора агрегации тромбоцитов простациклина и отрицательным зарядом эндотелиальных клеток. Кроме того, эндотелиальный белок тромбомодулин препятствует уже начавшейся коагуляции. Основной функцией тромбомодулина является инактивация тромбина и превращение (модификация) его в мощный активатор антикоагулянтной системы – протеин С. За счет этого происходит значимое снижение скорости коагуляционных реакций.
Эндотелий участвует в фибринолизе за счёт синтеза и выделения в кровоток тканевого плазминогенового активатора, который активирует плазминовую систему.
При повреждении мелкие сосуды спазмируются. Этот спазм обусловлен сокращением гладкомышечных клеток, он возникает рефлекторно и продлевается серотонином, тромбоксаном А2, катехоламинами и другими вазоконстриктора ми, которые появляются из эндотелиальных клеток и тромбоцитов. Повреждение сосудов сопровождается быстрой активацией тромбоцитов. Эта активация обусловлена появлением высоких концентраций АДФ (из поврежденных эритроцитов и сосудов), а также появлением коллагеновых и фибриллярных структур из субэндотелия. Контакт крови с коллагеном немедленно ведёт к адгезии тромбоцитов, реализуемой с участием рецепторов GP-Ia, GP-Ib и фактора Виллебранда.
Под влиянием АДФ, тромбоксана А2 и катехоламинов тромбоциты склеиваются между собой, образуя агрегаты, которые являются основой тромбоцитарной пробки. Усилению агрегации способствует тромбин, всегда появляющийся в результате свертывания крови в месте повреждения. Агглютинация и агрегация сопровождается изменением формы тромбоцитов и появлению рецепторов на мембране тромбоцитов к фибриногену (GPIIb-IIIa), благодаря чему, в присутствии ионов Са++, последний связывает между собой активированные тромбоциты. Такая связь между активированными тромбоцитами не прочна. Именно поэтому такую агрегацию называют обратимой. Образование прочной тромбоцитарной пробки следует после вторичной агрегации, которая сопровождается секрецией из тромбоцитов ПгG2, ПгH2, тромбоксана А2, ионов Са++, фактор активации тромбоцитов (ФАТ), адреналина, норадреналина, фибриногена и многих других. Секреция этих веществ обусловлена активацией актомиозиновой системы тромбоцитов, что обуславливает выделение вышеперечисленны х субстанций из тромбоцитов за счёт повышения давления внутри тромбоцита. Кроме того, активация актомиозиновой системы ведет к ретракции (сокращению и уплотнению) тромбоцитарной пробки.
В норме кровотечение из мелких сосудов прекращается не более чем через 5 минут.

При повреждении крупных кровеносных сосудов тромбоцитарная пробка не способна остановить кровотечение. Только коагуляционный гемостаз способен остановить кровотечение из крупного сосуда.
В коагуляционных реакциях принимают участие специальные белки, фосфолипиды (из тромбоцитарной мембраны), ионы кальция. Большинство белков, участвующих в коагуляции, являются проферментами (обозначаются римскими цифрами). Их активация осуществляется за счет протеолиза (они обозначаются римскими цифрами с добавлением буквы а, например, IIа, Xа, Vа и др.).

Международная номенклатура факторов свертывания крови

Коагуляционный гемостаз. Роль свертывающей системы в обеспечении остановки кровотечения

Третьякова О.С., д.мед.н., профессор, Крымский государственный медицинский университет им.С.И.Георгиевского, Симферополь

Свертывание крови (гемокоагуляция)– это сложный многоэтапный ферментный процесс, в котором помимо первичного (сосудисто-тромбоцитарного) звена гемостаза участвует коагуляционное его звено, обеспечивающее формирование фибринового тромба, т.е. окончательную остановку кровотечения.

Коагуляционное звено гемостаза представлено 3-мя системами:

· плазминовой, или фибринолитической, обеспечивающей лизис фибринового сгустка.

Эти системы, являясь звеньями единого биологического процесса, находятся в физиологическом равновесии, обеспечивая гомеостаз организма.

Физиологическая роль свертывающей системы в организме – окончательная остановка кровотечения путем плотной закупорки поврежденных сосудов красным тромбом, состоящим из сети волокон фибрина с захваченными ею клетками крови (эритроцитами, тромбоцитами и др.).

Факторов свертывания на сегодняшний день известно около 15-ти. Они содержатся в плазме (таблица 1). По своей природе факторы свертывания представляют собой белки: протеазы и неферментные протеины.

Общеизвестно, что факторы свертывания крови в организме находятся в неактивном состоянии. Их принято обозначать римскими цифрами (в отличие от тромбоцитарных факторов, обозначаемых арабскими). Если плазменные факторы из неактивных (проферментов) становятся активными ферментами, к их обозначению добавляется буква “а” (например, ХII— неактивная форма XIIфактора свертывания, ХIIа – его активная форма). Если активным действием начинает обладать один из фрагментов фактора, к нему тоже добавляется буква “а”. Как уже отмечалось ранее, в процессе свертывания помимо плазменных факторов крови участвуют также тканевые и клеточные, в частности, тромбоцитарные и эритроцитарные факторы. Помимо этого неотъемлемыми участниками свертывания являются ионы кальция и 3-й тромбоцитарный фактор.

Процесс свертывания условно разделяют на 3 фазы (рис. 1): образование

· тромбина (из неактивного протромбина под влиянием протромбиназы)

· фибрина (из фибриногена под влиянием тромбина).

Рис. 1 Схема фаз свертывания крови.

Схема свертывания крови, или как ранее ее называли «коагуляционный каскад», представлена на рис. 2.

Первая фазаобразование протромбиназы. Это сложный многоступенчатый процесс, в результате которого в крови накапливается комплекс факторов, способных превратить протромбин в тромбин. Образовавшийся комплекс называется протромбиназой.

Образование протромбиназы может проходить двумя путями (механизмами). Условновыделяют так называемой тканевой или“внешний путь (механизм)” образования протромбиназы, имеющий защитный характер при травме сосуда и “внутренний путь (механизм)”, причиной активации которого могут быть любые патологические состояния.

Рис. 2. Схема свёртывания крови (А.Н. Мамаев 2003)

Пусковым моментом для образования протромбиназы по внешнему механизму (рис. 3), так называемой тканевой протромбиназы, является повреждение клеток и освобождение фактора III(тканевого тромбопластина). Происходит последовательная активация вначале YII, затем Х, и наконец II(протромбина) плазменных факторов. В реализации внешнего механизма принимают участие также плзменный фактор Yи ионы кальция. Этот механизм короче, чем внутренний. Благодаря этому первые порции тромбина, переводящего фибриноген в фибрин, образуются уже через 5-7 секунд после травмы, что позволило назвать этот механизм «запальным».

Рис.3 Схема внутреннего, внешнего и общего пути свертывания крови

Активация свертывающей системы по внутреннему механизму (рис.3) и образование кровяной протромбиназы происходит без участия тканевого тромбопластина (фактора III), т.е. за счет внутренних ресурсов крови или плазмы. Кровяная протромбиназаобразуется медленнее, чем тканевая. Сигналом для активации свертывающей ситемы по внутреннему механизму, как и для запуска сосудисто-тромбоцитарного звена, служит повреждение сосудистой стенки. Причем, тромбоцит, на рецепторах которого адсорбируются прокоагулянты, устремляется к месту повреждения, где происходит его активация. Помимо этого он становится поставщиком плазменных факторов (и прежде всего ХII – фактора Хагемана). Контакт фактора Хагемана с коллагеном поврежденной сосудистой стенки приводит к его активации, что служит сигналом для запуска внутреннего механизма коагуляции с последовательной активацией ХI, IХ, YIII и IY(ионов кальция) факторов. Образовавшийся комплекс активирует Х фактор, что приводит к образованию необходимого количества протромбиназы. Процесс образования кровяной протромбиназы длится от 5 до 8-10 минут.

На этом заканчивается первая фаза процесса свертывания – образование протромбиназы, и в дальнейшем свертывание идет по единому пути.

Следует отметить ключевую роль ХII фактора в реализации процессов гемостаза. Активация фактора Хагемана может осуществляться не только при контакте с коллагеном и протеазами, но и с помощью ферментного расщепления (калликреином, плазмином, другими протеазами). ХII фактор является универсальным активатором всех плазменных протеолитических систем (свертывающей, калликреин-кининовой, плазминовой) и системы комплемента. Посредством активации калликреин-кининовой системы внутренний и внешний механизмы взаимно активируют друг друга (между отдельными их этапами существуют своеобразные “мостики” – альтернативные пути для процессов коагуляции). Так, комплекс факторов ХIIа-калликреин-кининоген (внутренний механизм) ускоряет активацию фактора VII (внешний механизм), а фактор VIIa ускоряют активацию фактора IX (внутренний механизм).

Вторая фаза – образование тромбина (рис.3). В эту фазу коагуляции протромбиназа переводит протромбин (II) в активную его форму – тромбин (IIа). Как известно, готового тромбина в плазме крови нет, но имеется его неактивный предшественник – протромбин, который в присутствии ионов кальция и под влиянием протромбиназы превращается в тромбин (рис. 2). Эта фаза длится 2 – 5 сек.

Третья фаза – образование фибрина. Тромбин в последующем переводит фибриноген в фибрин (рис. 3). Вначале образуется фибрин – мономер (Is), затем фибрин – полимер (Ii) (рис.2). Фактор ХIII (фибринстабилизирующий) укрепляет связи фибрин – полимера и переводит растворимый фибрин в нерастворимый (рис.2). Однако на этой стадии трехмерная сеть волокон фибрина, которая содержит эритроциты, тромбоциты и другие клетки крови (рис.4), все еще относительно рыхлая.

Рис. 4. Красный тромб – эритроциты в трёхмерной фибриновой сети

Свою окончательную форму она принимает после ретракции сгустка, обеспечиваемой сократительным белком тромбоцитов (тромбастенином) и ионами кальция, и возникающей при активном сокращении волокон фибрина и выдавливании сыворотки. Благодаря ретракции сгусток становится более плотным, формируется полноценный тромб, обеспечивающий окончательную остановку кровотечения. Эта фаза длится 2 – 5 с.

Доказано, что медленно протекающая коагуляция – это нормальный физиологический процесс, происходящий в огранизме постоянно. В крови даже в отсутствии повреждения сосудов непрерывно происходит превращение небольшого количества фибриногена в фибрин, расщепление и удаление которого обеспечивается специальной системой – плазминовой (системой фибринолиза). Образующийся в процессе коагуляции плазмы фибрин одновременно адсорбирует и инактивирует большие количества тромбина и фактора Ха, т. е. функционирует и как физиологический антикоагулянт.

Таким образом, упрощенно механизм свертывания можно представить следующим образом. Под влиянием протромбиназы (активатора протромбина), образующейся при повреждении тканей, агрегации и разрушении тромбоцитов, и в результате сложных химических взаимодействий факторов свертывания крови, белок плазмы протромбин превращается в тромбин, который, в свою очередь, расщепляет растворенный в плазме фибриноген с образованием фибрина. Волокна фибрина образуют основу тромба, который в последующем стабилизируется XIII (фибринстабилизирующим) фактором. Через несколько часов волокна фибрина активно сжимаются – происходит ретракция сгустка.

NB! Важно знать, что

1. Физиологическая роль свертывающей системы в организме заключается в окончательной остановке кровотечения путем формирования полноценного фибринового тромба.

2. Процесс формирования окончательного тромба протекает в 3 этапа, конечными продуктами каждого из которых являются протромбиназа, тромбин и фибрин соответственно.

3. Процесс свертывания на 1-ом этапе (образования протромбиназы) может протекать по двум путям (механизмам):внешнему и внутреннему. С момента образования протромбиназы, активирующей процессы превращения протромбина в тромбин, гемостаз идет по единому пути.

4. Из всех плазменных факторов свертывания лишь фактор VII (проконвертин) используется исключительно во внешнем механизме свертывания. Факторы XII, XI, IX, VIII и прекалликреин участвуют только во внутреннем механизме свертывания. Факторы X, V, II и I используются в едином (общем) пути свертывания.

5. Конечным продуктом свертывающей системы является фибрин.

Система гемостаза

Система гемостаза – биологическая система, обеспечивающая, с одной стороны, сохранение жидкого состояния циркулирующей крови, а с другой – предупреждение и купирование кровотечений.

Компоненты системы гемостаза :

сосудисто-тромбо цитарное звено

система свертывания крови (коагуляция)

фибринолитическа я система (тромболизис)

Сосудисто-тромбо цитарный гемостаз

В сосудисто-тромбо цитарном механизме свертывания крови участвуют сосуды, ткань, окружающая сосуды и форменные элементы крови (главная роль принадлежит тромбоцитам).
Тромбоциты образуются в костном мозге из мегакариоцитов. Продолжительност ь их жизни около 9 суток. При недостаточном количестве тромбоцитов или их функциональной неполноценности развивается микроциркуляторн ый тип кровоточивости. К важнейшим функциям тромбоцитов относят адгезивно-агрега ционную и ангиотрофическую .
В условиях нормы эндотелий эффективно предупреждает процессы адгезии, агрегации тромбоцитов, а также реакций коагуляции. Способность эндотелия сохранять кровь в жидком состоянии обеспечивается синтезом ингибитора агрегации тромбоцитов простациклина и отрицательным зарядом эндотелиальных клеток. Кроме того, эндотелиальный белок тромбомодулин препятствует уже начавшейся коагуляции. Основной функцией тромбомодулина является инактивация тромбина и превращение (модификация) его в мощный активатор антикоагулянтной системы – протеин С. За счет этого происходит значимое снижение скорости коагуляционных реакций.
Эндотелий участвует в фибринолизе за счёт синтеза и выделения в кровоток тканевого плазминогенового активатора, который активирует плазминовую систему.
При повреждении мелкие сосуды спазмируются. Этот спазм обусловлен сокращением гладкомышечных клеток, он возникает рефлекторно и продлевается серотонином, тромбоксаном А2, катехоламинами и другими вазоконстриктора ми, которые появляются из эндотелиальных клеток и тромбоцитов. Повреждение сосудов сопровождается быстрой активацией тромбоцитов. Эта активация обусловлена появлением высоких концентраций АДФ (из поврежденных эритроцитов и сосудов), а также появлением коллагеновых и фибриллярных структур из субэндотелия. Контакт крови с коллагеном немедленно ведёт к адгезии тромбоцитов, реализуемой с участием рецепторов GP-Ia, GP-Ib и фактора Виллебранда.
Под влиянием АДФ, тромбоксана А2 и катехоламинов тромбоциты склеиваются между собой, образуя агрегаты, которые являются основой тромбоцитарной пробки. Усилению агрегации способствует тромбин, всегда появляющийся в результате свертывания крови в месте повреждения. Агглютинация и агрегация сопровождается изменением формы тромбоцитов и появлению рецепторов на мембране тромбоцитов к фибриногену (GPIIb-IIIa), благодаря чему, в присутствии ионов Са++, последний связывает между собой активированные тромбоциты. Такая связь между активированными тромбоцитами не прочна. Именно поэтому такую агрегацию называют обратимой. Образование прочной тромбоцитарной пробки следует после вторичной агрегации, которая сопровождается секрецией из тромбоцитов ПгG2, ПгH2, тромбоксана А2, ионов Са++, фактор активации тромбоцитов (ФАТ), адреналина, норадреналина, фибриногена и многих других. Секреция этих веществ обусловлена активацией актомиозиновой системы тромбоцитов, что обуславливает выделение вышеперечисленны х субстанций из тромбоцитов за счёт повышения давления внутри тромбоцита. Кроме того, активация актомиозиновой системы ведет к ретракции (сокращению и уплотнению) тромбоцитарной пробки.
В норме кровотечение из мелких сосудов прекращается не более чем через 5 минут.

При повреждении крупных кровеносных сосудов тромбоцитарная пробка не способна остановить кровотечение. Только коагуляционный гемостаз способен остановить кровотечение из крупного сосуда.
В коагуляционных реакциях принимают участие специальные белки, фосфолипиды (из тромбоцитарной мембраны), ионы кальция. Большинство белков, участвующих в коагуляции, являются проферментами (обозначаются римскими цифрами). Их активация осуществляется за счет протеолиза (они обозначаются римскими цифрами с добавлением буквы а, например, IIа, Xа, Vа и др.).

Международная номенклатура факторов свертывания крови

Механизм коагуляционного гемостаза

Различают три этапа процесса свертывания крови (рис. 14-18). Первый этап завершается образованием активного протромбиназного комплекса на ФЛМ, в состав которого входят факторы X, У

Рис. 14-18.Схема коагуляционного гемостаза (по З.С. Бар кагану, А.П. Момоту, 1999-2001) АРС – активированный протеин С; ВМК – высокомолекулярный кининоген; ППК – плазменный прекалликреин; TFPI – ингибитор внешнего пути свертывания; t-PA – тканевой активатор плазминогена; PAI – ингибитор активатора плазминогена; ПДФГ – продукты деградации фибриногена; ПДФ – продукты деградации фибрина; VII – фактор неактивный; Vila – фактор активный

и Са 2 +. Второй этап характеризуется образованием тромбина – активной формы фактора II. На третьем этапе (конечная фаза свертывания крови) происходят формирование и стабилизация сгустка фибрина.

Первый этап каскадно-комплексной схемы свертывания крови включает активацию коагуляционного гемостаза по внутреннему и внешнему механизмам.

Внутренний (контактный) механизмхарактеризуется последовательной активацией факторов XII, XI, IX, VIII, X. В результате повреждения сосудистой стенки на поверхности тромбоцитарного агрегата образуется комплекс из трех белков – фактора XII (фактор Хагемана), плазменного прекалликреина (ППК) и высокомолекулярного кининогена (ВМК). После связывания с ВМК и калликреином (образуется из ППК под влиянием ВМК) фактор XII превращается в активную протеазу – XIIa, которая взаимодействует с неактивным фактором XI на ФЛМ и активирует его – образуется фактор XIa. Далее фактор XIa комплексируется с неактивным фактором IX и Ca 2 + на ФЛМ, что в условиях вспомогательной активации фактором VIIa сопровождается формированием IXa, последующее взаимодействие которого с активной формой фактора VIII-VIIIa (ее образование происходит под действием тромбина – IIa) и Ca 2 + на ФЛМ приводит к активации фактора Х.

Внутренний механизм первого этапа свертывания протекает намного медленнее, чем внешний. Он определяется:

• временем свертывания крови (5-11 мин в норме);

• каолиновым временем – временем свертывания рекальцифицированной цитратной плазмы в условиях контактной (каолин) активации факторов XII и XI (77-116 с при использовании нефракционированного каолина и 60-98 с при применении легкой фракции каолина);

• активированным парциальным тромбопластиновым временем (АПТВ) – временем свертывания рекальцифицированной цитратной плазмы в условиях контактной (каолин) и фосфолипидной (кефалин) активации факторов XII, XI, IX, VIII (в норме соответствует 30-42 с).

Внешний механизмактивации гемостаза предполагает наличие в крови внешнего (в обычных условиях не присутствующего в крови) фактора III (тканевого фактора – ТФ, или тканевого тромбопластина), высвобождающегося из эндотелиоцитов и гладкомышечных клеток поврежденных сосудов. Под его влиянием происходит

активация фактора VII c образованием VIIa. Реакция стимулируется следовыми количествами плазменных протеиназ – IIa, VIIa, IXa, Xa, циркулирующих в крови. Взаимодействие факторов III и VIIa на ФЛМ в присутствии ионов Са 2 + сопровождается активацией фактора Х с образованием Ха.

Свертывание крови по внешнему пути, который в пробирке имитируется добавлением к рекальцифицированной плазме тканевого тромбопластина, обозначается как протромбиновый (тромбопластиновый) тест. Нормальное время свертывания плазмы в присутствии тканевого тромбопластина (протромбиновое время – ПВ) колеблется в пределах 12-15 с. На основе ПВ рассчитываются протромбиновое отношение – ПО (отношение ПВ исследуемой плазмы к ПВ нормальной плазмы; в норме 0,7-1,1) и международное нормализованное отношение – МНО (ПО МИЧ , где МИЧ – международный индекс чувствительности тромбопластина; в норме от 1,0 до 1,4).

Таблица 14-19.Плазменные факторы свертывания крови

Номер, наименование и природа фактора Место образования. Содержание в плазме Факторы активации и механизм действия
I Фибриноген (структурный белок) Гепатоциты 1,8-4,0 г/л (80-120% активности) Под действием тромбина превращается в фибрин (Ia – основное вещество тромба) Участвует в агрегации тромбоцитов Способствует репарации тканей
II Протромбин (профермент сериновой протеазы тромбина) Гепатоциты (в присутствии витамина К) Около 0,1 г/л Под действием активной протромбиназы превращается в тромбин (IIa) Активирует фибриноген с образованием фибрина
III Тканевой тромбопластин или апопротеин III (трансмембранный белок) Эндотелиоциты, макрофаги Не содержится (высвобождается при повреждении стенки сосуда, тканей) Кофактор фактора VII, запускает внешний путь свертывания крови

Продолжение табл. 14-19

IV Ионы кальция – Са 2 + Гранулы тромбоцитов (плотные тельца), всасывается из кишечника 1,1-1,4 ммоль/л Участвует в образовании комплексов плазменных факторов и липидов Входит в состав активной протромбиназы Способствует агрегации тромбоцитов Связывает гепарин Принимает участие в образовании первичной гемостатической пробки и ретракции тромба Тормозит фибринолиз
V Проакцелерин или лабильный фактор (церулоплазмино- подобный связывающий белок) Гепатоциты, мегакариоциты, тромбоциты Около 0,01 г/л (70-150% активности) Активируется фактором IIа Входит в состав активной протромбиназы Создает оптимальные условия для взаимодействия факторов Ха и II
VII Проконвертин или стабильный фактор (профермент сериновой протеазы) Гепатоциты (в присутствии витамина К) Около 0,005 г/л (80-120% активности) Активируется фактором III Активирует факторы IX, Х (участвует в образовании протромбиназы по внешнему пути)
VIII:C Антигемофильный глобулин (церулоплазминоподобный связывающий белок) Гепатоциты 0,01-0,02 г/л (60-250% активности) Активируется тромбином Создает оптимальные условия для взаимодействия факторов Ка и X
VIII:ΒΦ Фактор Виллебранда (структурный белок) Эндотелиоциты, мегакариоциты 80-120% активности Стабилизирует фактор VIII Способствует адгезии тромбоцитов

Окончание табл. 14-19

IX Фактор Кристмаса или компонент плазменного тромбопластина, РТС-фактор (профермент сериновой протеазы) Гепатоциты (в присутствии витамина К) Около 0,003 г/л (70-130% активности) Активируется факторами XIa, VIIa Активирует фактор X
X Фактор Стюарта-Прауэра (профермент сериновой протеазы) Гепатоциты (в присутствии витамина К) Около 0,01 г/л (80-120% активности) Активируется факторами VIIIа и VIIа Входит в состав активной протромбиназы Переводит протромбин в тромбин (IIa)
XI Плазменный предшественник тромбопластина или PTA- фактор, фактор Розенталя (профермент сериновой протеазы) Гепатоциты Около 0,005 г/л (70-130% активности) Активируется фактором Активирует фактор IX
XII Фактор Хагемана или контактный фактор (профермент сериновой протеазы) Гепатоциты Около 0,03 г/л (70-150% активности) Активируется калликреином и ВМК Запускает внутренний путь свертывания крови Активирует ППК, систему фибринолиза
XIII Фибринстабилизирующий фактор (профермент трансглутаминазы) Гепатоциты, мегакариоциты 0,01-0,02 г/л (70-130% активности) Активируется тромбином и Ca 2 + Стабилизирует фибрин Способствует репарации тканей
Плазменный прекалликреин (ППК) или фактор Флетчера (профермент плазменного калликреина) Гепатоциты Около 0,05 г/л (60-150% активности) Активируется ВМК, фактором XIIa Активирует факторы VII, XII, ВМК, плазминоген
Высокомолекулярный кининоген (ВМК) или фактор Фитцджеральда (гликопротеин) Гепатоциты Около 0,06 г/л (80-130% активности) Активирует факторы XI, XII, плазминоген, ППК

Внутренний и внешний механизмы гемостаза тесно взаимосвязаны, их разделение является в некоторой степени условным. Так, фактор VIIa активирует факторы свертывания XII и (в присутствии тканевого тромбопластина и ионов кальция) IX (рис. 14-18). В свою очередь, фактор VII может быть активирован факторами XIIa и XIa. Предполагается, что внешний механизм обеспечивает фоновое свертывание крови. Инициация внешнего пути гемостаза протекает быстрее (12-15 с), чем внутреннего механизма (30-42 с). Это приводит к формированию базового количества тромбина, достаточного для последующей активации факторов внутреннего каскада гемокоагуляции.

После активации фактора X внутренний и внешний пути имеют одинаковое (общее) развитие, и поэтому дальнейшие превращения факторов свертывания крови обозначают как общий путь свертывания крови.

Второй этап характеризуется активацией фактора V и образованием активного протромбиназного комплекса (активной протромбиназы) на ФЛМ из факторов Vа, Ха и Са 2 +, способствующего превращению протромбина (фактор II) в тромбин (фактор IIa).

Третий этап – конечная фаза свертывания крови, характеризующаяся трансформацией растворенного в плазме фибриногена в фибрин, образующий каркас сгустка крови. На этом этапе происходит отщепление тромбином от молекулы фибриногена двух фибринопептидов А и двух фибринопептидов В с образованием фибрин-мономеров, полимеризующихся в димеры и далее – в тетрамеры и более крупные олигомеры, трансформирующиеся в волокна фибрина, образующие сгусток (см. рис. 14-19). Стабилизация сгустка фибрина осуществляется фактором XIII, активирующимся под действием тромбина (IIa) в присутствии ионов кальция, в результате чего водородные связи между мономерами фибрина трансформируются в ковалентные связи, и образующиеся сгустки фибрина становятся более прочными и устойчивыми к различным растворителям (мочевине, монохлоруксусной кислоте и др.).

Повышенное содержание в плазме крови промежуточных продуктов превращения фибриногена в фибрин служит показателем активации системы свертывания крови и наличия тромбинемии.

• Для оценки конечного этапа свертывания крови используются: тромбиновый тест, с помощью которого определяют время свертывания цитратной плазмы под влиянием стандартизи-

рованного на контрольной (нормальной) плазме тромбина (в норме 14-16 с);

• определение содержания фибриногена в плазме крови хронометрическим методом (по Клаусу – с помощью коагулометра) или гравиметрическим методом (по Рутбергу – по весу сгустка крови). У здорового человека концентрация фибриногена в плазме составляет 2,0-4,0 г/л.

Коагуляционный гемостаз

Свертывание крови – это цепной ферментативный процесс, в котором последовательно происходит активация факторов свертывания и образование их комплексов. Сущность свертывания крови заключается в переходе растворимого белка крови фибриногена в нерастворимый фибрин, в результате чего образуется прочный фибриновый тромб.

Процесс свертывания крови осуществляется в 3 последовательные фазы.

Первая фаза является самой сложной и продолжительной. Во время этой фазы происходит образование активного ферментативного комплекса – протромбиназы, являющейся активатором протромбина. В образовании этого комплекса принимают участие тканевые и кровяные факторы. В результате формируются тканевая и кровяная протромбиназы. Образование тканевой протромбиназы начинается с активации тканевого тромбопластина, образующегося при повреждении стенок сосуда и окружающих тканей. Вместе с VII фактором и ионами кальция он активирует X фактор. В результате взаимодействия активированного X фактора с V фактором и с фосфолипидами тканей или плазмы образуется тканевая протромбиназа. Этот процесс длится 5 – 10 секунд.

Образование кровяной протромбиназы начинается с активации XII фактора при его контакте с волокнами коллагена поврежденных сосудов. В активации и действии XII фактора участвуют также высокомолекулярный кининоген (ф XV) и калликреин (ф XIV). Затем XII фактор активирует XI фактор, образуя с ним комплекс. Активный XI фактор совместно с IV фактором активирует IX фактор, который, в свою очередь, активирует VIII фактор, Затем происходит активация X фактора, который образует комплекс с V фактором и ионами кальция, чем и заканчивается образование кровяной протромбиназы. В этом также участвует тромбоцитарный фактор 3. Этот процесс длится 5-10 минут.

Вторая фаза. Во время этой фазы под влиянием протромбиназы происходит переход протромбина в активный фермент тромбин. В этом процессе принимают участие факторы IV, V, X.

Третья фаза. В эту фазу растворимый белок крови фибриноген превращается в нерастворимый фибрин, образующий основу тромба. Вначале под влиянием тромбина происходит образование фибрин-мономера. Затем с участием ионов кальция образуется растворимый фибрин-полимер (фибрин “S”, soluble). Под влиянием фибринстабилизирующего фактора XIII происходит образование нерастворимого фибрин-полимера (фибрин “I”, insoluble), устойчивого к фибринолизу. В фибриновых нитях оседают форменные элементы крови, в частности эритроциты, и формируется кровяной сгусток, или тромб, который закупоривает рану.

После образования сгустка начинается процесс ретракции, т.е. уплотнения и закрепления тромба в поврежденном сосуде. Это происходит с помощью сократительного белка тромбоцитов тромбостенина и ионов кальция. Через 2 – 3 часа сгусток сжимается до 25 – 50% от своего первоначального объема и идет отжатие сыворотки, т.е. плазмы, лишенной фибриногена. За счет ретракции тромб становится более плотным и стягивает края раны.

Фибринолиз

Фибринолиз – это процесс расщепления фибринового сгустка, в результате которого происходит восстановление просвета сосуда. Фибринолиз начинается одновременно с ретракцией сгустка, но идет медленнее. Это тоже ферментативный процесс, который осуществляется под влиянием плазмина (фибринолизина). Плазмин находится в плазме крови в неактивном состоянии в виде плазминогена. Под влиянием кровяных и тканевых активаторов плазминогена происходит его активация. Высокоактивным тканевым активатором является урокиназа. Кровяные активаторы находятся в крови в неактивном состоянии и активируются адреналином, лизокиназами. Плазмин расщепляет фибрин на отдельные полипептидные цепи, в результате чего происходит лизис (растворение) фибринового сгустка,

Если нет условий для фибринолиза, то возможна организация тромба, т.е. замещение его соединительной тканью. Иногда тромб может оторваться от места своего образования и вызвать закупорку сосуда в другом месте (эмболия).

У здоровых людей активация фибринолиза всегда происходит вторично в ответ на усиление гемокоагуляции. Под влиянием ингибиторов фибринолиз может тормозиться. Схема коагуляционного гемостаза представлена на рисунке 1 (стр. 10).

Источники:

http://www.likar.info/onkologiya/article-48256-koagulyatsionnyj-gemostaz-rol-svertyvayushhej-sistemy-v-obespechenii-ostanovki-krovotecheniya/

http://reproductologist.com/sistema-gemostaza

http://helpiks.org/3-60317.html

http://studfile.net/preview/1819331/page:5/

http://www.zolotoyus-info.ru/medinform/altmedical_6124.html

Ссылка на основную публикацию